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Abstract: Cycle threshold (Ct) increase, quantifying plant-derived DNA fragmentation, was evaluated for its utility
as a time-temperature integrator. This novel approach to monitoring thermal processing of fresh, plant-based foods
represents a paradigm shift. Instead of using quantitative polymerase chain reaction (qPCR) to detect pathogens, identify
adulterants, or authenticate ingredients, this rapid technique was used to quantify the fragmentation of an intrinsic
plant mitochondrial DNA (mtDNA) gene over time-temperature treatments. Universal primers were developed which
amplified a mitochondrial gene common to plants (atp1). These consensus primers produced a robust qPCR signal in
10 vegetables, 6 fruits, 3 types of nuts, and a biofuel precursor. Using sweet potato (Ipomoea batatas) puree as a model low-
acid product and simple linear regression, Ct value was highly correlated to time-temperature treatment (R2 = 0.87); the
logarithmic reduction (log CFU/mL) of the spore-forming Clostridium botulinum surrogate, Geobacillus stearothermophilus
(R2 = 0.87); and cumulative F-value (min) in a canned retort process (R2 = 0.88), all comparisons conducted at 121 °C.
D121 and z-values were determined for G. stearothermophilus ATCC 7953 and were 2.71 min and 11.0 °C, respectively.
D121 and z-values for a 174-bp universal plant amplicon were 11.3 min and 9.17 °C, respectively, for mtDNA from sweet
potato puree. We present these data as proof-of-concept for a molecular tool that can be used as a rapid, presumptive
method for monitoring thermal processing in low-acid plant products.
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Practical Application: This method could be used as another tool for thermal process validation and monitoring.
It is especially useful for thermal processes over 100 °C, since temperatures above boiling rapidly damage DNA. Its
advantages over enzymatic assays are that mtDNA is highly stable and can be stored at freezing temperatures for long
periods. Mitochondrial DNA can be used for all plant products tested. Processors will be able to validate processes and
track process deviations using rapid molecular methods. Processors can use this presumptive test prior to shipping out a
product.

Introduction
Mitochondria are organelles that supply power in the form

of ATP to eukaryotic cells. Foodstuffs, such as vegetables, nuts,
and fruits contain multiple intracellular copies of nonnuclear
DNA, mitochondrial DNA (mtDNA), which can be ampli-
fied via quantitative polymerase chain reaction (qPCR). Each
mitochondrion possesses its own genome in multiple copies
(Anderson and others 1981; Foury and others 1998). These
properties make mitochondrial DNA sequences (mtDNA) ex-
cellent targets for qPCR amplification in terms of specificity,
sensitivity, and robustness due to multiple copies per cell (ap-
proximately 1000) (Bogenhagen and Clayton 1974; Gerber and
others 2001; Andreasson and others 2002). Rapidly dividing,
continuous cell lines, such as HeLa cells, were found to have
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Dı́az is with USDA-Agriculture Research Service, SAA, Food Science Research
Unit, 322 Schaub Hall-NCSU, Raleigh, NC 27695, U.S.A. Author Osborne is
with Dept. of Statistics, North Carolina State Univ., Raleigh, NC 27695, U.S.A.
Author Hassan is with Prestage Dept. of Poultry Science, North Carolina State
Univ., Raleigh, NC 27695, U.S.A. Direct inquiries to author Caldwell (E-mail:
jane.caldwell@transagra.com).

four times the amount of mtDNA as mouse L cells (Bogen-
hagen and Clayton 1974). Therefore, the advantages of targeting
mtDNA in living and respiring plant-derived foods with qPCR are
substantial.

mtDNA genes are used as identifiers in many scientific disci-
plines. They have been adopted for bar-coding almost all groups
of higher animals (http://www.barcoding.si.edu/). mtDNA is also
used in human typing for forensic analysis (Hopwood and others
1996; Andreasson and others 2002; Budowle and others 2003) us-
ing tissues such as bones, teeth, and hair shafts for DNA extraction.
mtDNA primers/probes have been developed for source track-
ing fecal contaminates in wastewater influents and effluents using
multiplex qPCR (Caldwell and others 2007; Caldwell and Levine
2009; Caldwell and others 2011). In the food industry, PCR-
based mtDNA analyses were used in the authentication of meats
and to trace contamination of other animals in the food prod-
ucts (Meyer and Candrian 1996; Lahiff and others 2001; Zhang
and others 2007; Fujimura and others 2008). The development of
these molecular tools has improved the monitoring of food quality,
preventing fraudulent description of food content, and identifying
adulterants. The commercial success of using mtDNA as identifiers
in heterogeneous food matrices led to the idea of using intrinsic
foodstuff mtDNA as indicators of thermal processing efficacy.

The drastic effect of high temperature on DNA degradation
is well established. Above 100 °C, denaturation, depurination,
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deamination, and loss of secondary structure occurs (Gryson
2010). However, autoclaving a foodstuff at 121 °C for 15 min
does not destroy all DNA available for PCR (Lipp and others
1999). Other researchers have reported reduced recovery of DNA
via qPCR from cornmeal boiled for 60 min at 100 °C (Murray and
others 2007). Increased Ct (threshold cycles) values occurred in
DNA from heat-treated corn grits and corn flour when compared
to untreated corn and resulted in distortions of qPCR assays for
detection of genetically modified organisms (Moreano and others
2005). Therefore, DNA is degraded but still detectable by qPCR,
when using thermal processing techniques suitable for preserving
vegetables and fruits.

The effect of heat treatments on the quantification and detec-
tion of meat DNA by qPCR was found to be dependent on the
temperature and duration of the treatment, as well as the size of
the amplicon (Sakalar and others 2012). Smaller amplicons were
less likely to be affected by heat treatment and the degree of
DNA fragmentation was directly correlated to time and tempera-
ture (Sakalar and others 2012). A relationship between amplicon
size and detection after heat treatment or mechanical processing
was cited in other meat assays (Hird and others 2006) and plant
products, such as soybeans, maize, peas, and white potatoes (Bauer
and others 2003; Kharazmi and others 2003; Hrncirova and others
2008).

Thermal validation and monitoring can employ microbial cul-
ture methods for verification of sterility (Pflug and others 1980;
Smith and Kopelman 1982; Marcy 1997; Guan and others 2003).
For low-acid products (pH 4.6 to 6.0) the target organism is
the Clostridium botulinum spore (Pflug and others 1985) due to
its heat resistance and the catastrophic effects of its toxin when
ingested. The minimum botulinum cook has been determined
based on a D-value of 0.21 min at 121 °C (Esty and Meyer 1922;
Townsend and others 1938; Stumbo 1965). For the canning indus-
try to achieve a 12-log reduction (12D) for a low-acid product,
the convention is to round up to an F0 of 3 min (Tucker and
others 2008), F being the cumulative time-temperature treatment
at 121 °C. Destruction of spore-forming C. botulinum surrogates
such as Geobacillus stearothermophilus have been used to monitor
heat processes in low-acid foods such as sweet potato puree (Smith
and Kopelman 1982; Brinley and others 2007; Steed 2010). Prob-
lems with using a culture approach include tracking and recovering
surrogate spores, and time required to culture (48 h). Molecular
methods, such as qPCR, are able to detect spores and vegetative
bacteria but are unable to differentiate between live and dead cells.

Other biological techniques such as enzymes have been used or
proposed as time-temperature indicators: Beta-glucosidase from
Pyrococcus furiosus (Yen 2009), alpha-amylase from B. licheniformis
(De Cordt and others 1994; Guiavarch and others 2004) or B.
subtilis (Guiavarch and others 2005), algal R-phycoerythrin (Smith
and others 2002; Orta-Ramirez and others 2001), glucose oxidase
(Reyes-De-Corcuera and others 2005), and endogenous muscle
proteins such as lactate dehydrogenase in meats (Veeramuthu and
others 1998) and alkaline phosphatase and lactoperoxidase in milk
(Claeys and others 2004). Advantages of using endogenous DNA,
intrinsic to the plant food, over enzymes are many. DNA is more
stable than protein enzymes and can be stored for long time periods
at −20 °C. Therefore, one can return and assay the process at a later
date, thus having a record of past events. Most enzyme techniques
are extrinsic to the process and invasive. Enzymes must be added
or containerized then recovered from the system. A great deal of
energy is exerted to find the proper carrier for the exogenous
enzyme (De Cordt and others 1994; Guiavarch and others 2004;

Table 1–Initial quantitative PCR primers tested.

Primer name Sequence

174F (forward) 5′ –TTTCCGCGATAATGGAATGCACGC-3′
174R (reverse) 5′ –TCCGATCGTTTAGCCGCTCTTTCT-3′
108F (forward) 5′ –CGCCTTTGCTCAATTTGGCTCAGA-3′
108R (reverse) 5′ –GGCAGTGGTGCATATTGTGGTTGT-3′
81F (forward) 5′ –CGCCTTTGCTCAATTTGGCTCAGA-3′
81R (reverse) 5′ –AGTACTTCTGTCAGCCTTGCACCT-3′
141F (forward) 5′ –GAATTTGCCAGCGGTGTGAAAGGA-3′
141R (reverse) 5′ –TCCCGCAGGAACATCCACAATAGA-3′

Reyes-De-Corcuera and others 2005; Wang and others 2010).
Endogenous enzymes are specific to the product and not universal
like DNA.

Quantitative PCR has several advantages over culture tech-
niques and conventional PCR: it is rapid (4 to 6 h), does not
require gels or plates and is directly measurable in real time. For
this study, all mtDNA qPCR assays developed met minimum in-
formation for publication of quantitative real-time PCR experi-
ments (MIQE) guidelines (Bustin and others 2009) which features
a quality control checklist. Conformity to MIQE guidelines makes
qPCR operator- and laboratory-independent and allows compar-
isons between results from different production runs and different
locations.

Because of the many advantages of using intrinsic mtDNA from
foodstuffs directly, we propose monitoring and process validation
of thermally processed low-acid plant foods using mitochondrial
DNA fragmentation via qPCR by graphing its thermal destruction
over time. This approach to monitoring food safety represents
a paradigm shift by using qPCR to quantify the fragmentation
of foodstuff mtDNA over time due to thermal processing, and
compare the kinetics of this protocol to the D- and z-values of
spore-forming bacteria.

Materials and Methods

Primer design and validation
Primers were designed using consensus sequences to target a

wide variety of plant foods. Four sets of qPCR primers were de-
signed with Primer Quest software (http://scitools.idtdna.com/
Primerquest/) targeting the Ipomoea batatas F1-ATPase alpha
subunit (atp1) mitochondrial gene (GenBank AY596672.1).
Amplicons for primer sets ranged from 81 to 174 base
pairs (Table 1). Four primer sets were purchased from IDT
(http://www.idtdna.com). Oligonucleotide primers were recon-
stituted in TE buffer (pH 7.5) and stored at -20 °C prior to use. All
primer sets matched the atp1 gene with 100% identity, not only
in I. batatas, but in a wide range of common fruits and vegetables
when subjected to NCBI BLAST searches

Standard curve
Standard curves were generated using gBlocksTM Gene Frag-

ments (https://www.idtdna.com/pages/products/genes/gblocks
-gene-fragments) which are double-stranded, sequence-verified
oligonucleotides of the atp1 gene. Tenfold serial dilutions of atp1
copies (108 to 101) were performed and PCR amplification effi-
ciency (E) was determined using the slope of the standard curve:

E= (10−1/slope) − 1.
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Data analysis of the qPCR standard curve was performed us-
ing goodness-of-fit linear regression correlation coefficient (R2)
(Figure 1).

Assessing universality of primers
The atp1 gene was found to be highly conserved among plant

species. Primers were created which could be used universally to
test plant-based foods, both singly and in mixtures, such as soups
(Table 1). Fresh, uncooked fruits, vegetables, and nuts were pur-
chased from a retail grocery store and processed immediately by
grinding in a Hamilton Beach coffee mill. The mill was thorough
cleaned with distilled water and 70% ethanol between samples and
reps to prevent DNA cross-contamination. Three separate individ-
uals were used for each variety of plant tested. Six reps were tested
in all, 3 uncooked controls and 3 autoclave treatments (20 min at
121 °C). The tissue culture protocol of the MasterPure DNA pu-
rification kit (Epicentre, Madison, Wis., U.S.A.) was used. DNA
was quantified and qualified using a spectrophotometer (Nan-
odrop, Wilmington, Del., U.S.A.). DNA was normalized to 5 to
10 ng/well using the qPCR assay as below. Each sample was run
in duplicate wells. Mean Ct values for uncooked and autoclaved
plant materials were recorded as well as the increase of Ct due to
autoclave treatment and the slope of the line formed by the graph
of the 2 values (Table 2).

Sweet potato puree
Sweet potato puree was prepared according to the method of

Truong and Walter 1994. Briefly, sweet potatoes were cured and
stored at 13 to 16 °C and 80% to 90% relative humidity prior to use.
Roots were washed and peeled by immersion in a boiling solution
of 5.5% NaOH for 4 min. Peeled roots were hand trimmed and
cut into slices, then steam-cooked for 20 min in a thermo-screw
cooker (Rietz Manufacturing co., Santa Rosa, Calif., U.S.A.) and
reduced in size in a hammer mill (Model D, Fitzpatrick Co.,
Chicago, Ill., U.S.A.) with a 0.15 cm screen. The puree was stored
in polyethylene bags at −20 °C until used in thermal trials.

Sporulation
Lyophilized G. stearothermophilus (NRRL No. B-1102, equiv-

alent to ATCC 7953) was obtained from the ARS Culture Col-
lection (USDA-ARS; Peoria, Ill., U.S.A.), reconstituted, veri-
fied by microscopy and Gram-staining, and placed in freezer
stocks containing 20% glycerol. To sporulate, 10 mL BHI broth
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Figure 1–Mitochondrial DNA qPCR standard curve for 174 bp amplicon.

(Becton Dickinson, Sparks, Md., U.S.A.) was inoculated directly
from freezer stocks or 1% volume from liquid culture and incu-
bated overnight at 55 °C, static. Bacillus heat resistant agar contain-
ing 13 g nutrient broth, 0.51 g MgSO4(7H2O), 0.97 g KCl, 0.2
g CaCl2(2H2O), 0.003 MnSO4(H2O), 0.00055 g FeSO4(7H2O),
and 15 g agar brought up to 1 L with distilled water and auto-
claved (Stam 2008), was spread with 100 μL overnight culture.
Over 20 plates were spread in this fashion. Plates were incubated
at 55 °C for 5 d. Spores were harvested by applying 10 mL cold,
sterile, distilled H2O containing 0.1% Tween 80 (Sigma-Aldrich;
St. Louis, Mo., U.S.A.) directly to each plate and scraping with
a sterile cell scraper (van Melis and others 2011). The resulting
liquid, containing both vegetative cells and spores, was aspirated
from plates via modified pipette tip and placed in 50 mL centrifuge
tubes and spun at 6000× g for 10 min at 4 °C. Enzymatic clean-
ing to eliminate vegetative cells (modified from Foegeding and
Busta 1983) was performed by adding lysozyme (200 mg/mL) to
each 200 mL spore pellet and incubating at 45 °C for 30 min
with occasional vortexing, then adding trypsin (final volume; 100
mg/mL) and incubating at 45 °C for an additional 2 h with oc-
casional vortexing. Spore solutions were rinsed 10× with 25 mL
cold water/0.1% Tween 80 (6000× g for 10 min at 4 °C). After
a final spin, spores were re-suspended in 10 mL water/Tween 80
solution. Spores were evaluated by dark phase microscopy with a
target ratio of spores to vegetative cells of 9:1 or greater. Spores
were stored at 4 °C long term, but centrifuged and re-suspended
weekly to maintain and prevent germination.

Hot oil bath trials
In an effort to mimic and quantify values in a 12D thermal

process, the reduction curve of G. stearothermophilus (C. botulinum
surrogate) spores with resulting D- and z-values were compared
to Ct values of sweet potato puree in a hot oil bath at the
following temperatures: 116, 121, 123, and 126 °C. A hot oil
bath (EW-111, Neslab Instruments, Newington, N.H., U.S.A.)
filled with 8 L white mineral oil (Therminol XP, Solutia, Inc, St.
Louis, Mo., U.S.A.) was used to maintain each target tempera-
ture for substances placed in a thermal death tube (TDT). This
laboratory system was used to replicate conditions in an industrial
retort, heat exchanger, or microwave thermal process. The TDT
was composed of a ¾ inch aluminum screw post (Screwpost.com,
Muskegon, Mich., U.S.A.) cut to size and filed for smoothness,
¼ inch nylon machine screws, Viton fluoroelastomer O-ring gas-
kets (screw size #6) and Viton flat washers size #6 (all parts from
McMaster-Carr, Atlanta, Ga., U.S.A.). Oil bath temperature was
monitored using a type J-K-T microprocessor thermometer ther-
mocouple (HH23A, Omega, Stamford, Conn., U.S.A.) and type T
1/8” diameter insertion probe (50335-T; Atkins Technical, Inc.;
Gainesville, FL, U.S.A.). Come up time (CUT) for TDTs was
determined for all target temperatures by inserting and sealing
a 0.0095 inch diameter probe into the vessels (30 s). In each
TDT, 100 μL of 1:4 diluted puree or 100 μL of G. stearother-
mophilus spores (ca. 108 CFU/mL) were inserted and sealed. For
G. stearothermophilus spores, samples were heated for 0, 4, 8, and
12 min at 116 °C; 0, 0.5, 1, 2, 4, 8, 16, and 20 min at 121 °C; 0,
1, 2, and 4 min at 123 °C; 0, 0.5, 1, 2, and 4 min at 126 °C, all
heat treatments beginning after CUT. Samples for diluted purees
were heated for 0, 12, 24, 48, and 60 min at 116 °C and 0, 4, 8,
12, and 18 min at 121, 123, and 126 °C, also taking into account
the CUT. Three replicates were run per time point: 3 TDTs were
placed in a metal tea strainer to facilitate removal of samples from
hot oil. Strainers containing TDTs were taken out of oil bath and
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Table 2–Universality of primers (174 bp amplicon) and demonstration of mtDNA fragmentation (increase in Ct value) across
different plant materials after autoclave treatment.

Mean uncooked Mean autoclaved
Sample Ct Ct Difference Slope

Vegetables
White potato 19.73 ± 0.45∗∗ 32.77 ± 0.40 13.04 0.65
Sweet potato puree 24.06 ± 0.18 33.00 ± 0.07 8.90 0.45
Tomato 18.86 ± 0.12 32.27 ± 0.75 13.41 0.67
Green pepper 19.45 ± 0.28 35.66 ± 1.89 16.21 0.81
Red pepper 18.99 ± 0.20 34.63 ± 1.17 15.65 0.78
Jalapeno pepper 19.96 ± 0.23 35.66 ± 0.45 15.70 0.79
Carrot 15.71 ± 0.07 32.45 ± 0.14 16.74 0.84
Green bean 22.45 ± 0.17 32.38 ± 0.27 9.93 0.50
Corn 22.40 ± 0.30 27.24 ± 0.31 4.84 0.24
Cucumber 18.47 ± 0.12 29.88 ± 0.15 11.40 0.57

Biofuels
Switch grass 28.26 ± 0.16 34.69 ± 0.23 6.43 0.32

Fruits
Apple 22.95 ± 0.73 36.27 ± 1.95 13.32 0.67
Blueberry 25.88 ± 2.18 35.51 ± 3.60 9.63 0.48
Peach 20.93 ± 0.17 37.52 ± 0.49 16.60 0.83
Strawberry 23.27 ± 0.18 33.17 ± 0.80 9.90 0.50
Pineapple 22.97 ± 0.70 33.31 ± 2.72 10.35 0.52
Grape 27.95 ± 0.18 32.11 ± 1.11 4.16 0.21

Nuts
Peanut∗ 17.00 ± 0.21 23.10 ± 0.92 6.10 0.32
Almond 18.31 ± 0.18 27.25 ± 0.17 8.94 0.45
Pecan 25.86 ± 0.27 31.43 ± 0.28 5.57 0.28

∗Roasted at 167 °C for 19 min. All others autoclaved at 121 °C for 20 min. ∗∗Standard deviation.

immediately placed in an ice slurry for 30 s to quickly cool them.
Strainers were stored at room temperature until ready for DNA
extraction or culture plating. Total amount of sweet potato puree
recovered from hot oil bath treatment was determined from an
initial sample of 100 μL.

The D-value (decimal reduction time) is defined as the time in
minutes at a given temperature that results in a one log reduction in
microbial count (Sandeep, personal communication; Pflug 1990).
Given the equation:

N = N010−t/D
T,

where N0 and N are the initial and final number of microor-
ganisms, respectively, the D-value at a given temperature (DT) is
calculated by graphing the log10 number of microorganisms over
time (min) and determining the slope: slope = − 1/DT .

The z-value is the temperature change required for a one log
change in the D-value of a microorganism (Sandeep, personal
communication; Pflug 1990). Given the equation

DT = Dref 10Tref−T/z

the z-value is calculated by graphing log D-value (s) versus tem-
perature and determining the slope: slope = − 1/z.

G. stearothermophilus spores were serially diluted and plated with
a spiral plater (Spiral Biotech Inc., Norwood, Mass., U.S.A.) or
a simplified agar plate technique (Jett and others 1997); both on
BHI agar (Becton Dickinson). After 24 h incubation at 55 °C,
colonies were enumerated with an automated spiral plate counter
(Q-count, Spiral Biotech Inc) or counted manually. The lower
detection limits were 4 × 102 and 1 × 103 CFU/mL for the spiral
plate and simplified agar technique, respectively.

Ct values were converted to log10 copy numbers using the linear
relationship determined empirically from the standard curve of the
174 bp amplicon (Figure 1):

y = −3.1909x + 38.091,

where y is the Ct value and x is the log10 copy number. A flow
chart (Figure 2), illustrates the steps to determine and compare the
D- and z-values of the G. stearothermophilus spores with mtDNA
fragmentation (�Ct converted to log10 copy number) of the low-
acid purees.

Retort trials
Sweet potato puree was produced as before and placed in

68.3 × 101.6 mm cans outfitted with T-type C-2 tube and
rod thermocouples (Ecklund-Harrison Technologies, Fort Myers,
Fla., U.S.A.). Colorimetric G. stearothermophilus ampoules (Raven
ProSpore; Mesa Laboratories, Inc., Lakewood, Colo., U.S.A.) were
placed in the center of each can, adjacent to the thermocou-
ple probes. Cans were sealed with a double seam using an auto-
mated can sealer (Dixie Canner Co., Athens, Ga., U.S.A.). Total
weights of puree and size of head space were similar between all
cans in each run. Canned sweet potato puree was loaded into a
Model PR-900 pilot retort (Stock sterilisationstechnik, Herman-
stock Maschf.; Neumunster, West Germany) with thermocouples
attached to a recording device and run in one of 2 full water
immersion protocols listed below. Protocol 00 was a substandard
treatment not meant to kill spores (Appendix A: Supporting In-
formation). Protocol 01 was a > 6D protocol meant to eliminate
all G. stearothermophilus test spores (Appendix B: Supporting In-
formation). Each protocol was run in triplicate using 3 cans per
run. Puree was sampled from the center of each can by carefully
removing the top layers with a spatula and taking a 500 μL aliquot
next to the thermocouple probe. DNA was extracted from this
centrally located aliquot and atp1 qPCR protocol run as before.

Vol. 80, Nr. 8, 2015 � Journal of Food Science M1807
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ProSpore (Mesa Laboratories) ampoules were incubated at 55 °C
for 48 h as recommended by the supplier, and then assessed for
colorimetric change. F-values were determined from the time-
temperature data collected. F-value was calculated as follows:

F = 10((T−121.1)/10)�t,

where T is temperature in °C and t is time in minutes. Ct values
were correlated to F-values of all runs.

Retort data statistics
To determine the cumulative F-value that corresponds to a

given Ct value, the method of inverse prediction was used. This

methodology enables the assessment of uncertainty associated with
estimation of an unknown cumulative F-value. A linear regression
of Y = CT on X = cum F was fit (with R2 = 0.875) to m =
21 bivariate measurements, (y1; x1), . . . , (y21; x21). The estimated
value of X = X0 that corresponds to a given measurement of y =
y0 is given by

X̂0 = y0 − β̂0

β̂1

,

where (β̂0, β̂1) denote the estimated intercept and slope from the
regression. The standard error for this nonlinear function of re-
gression coefficients may be approximated by

Figure 2–Flow chart of mitochondrial DNA fragmentation protocol.
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Table 3–Inverse prediction statistics for retort process validation
showing samples needed for low standard errors.

99% Confidence
levels

Samples needed Standard error (%) Upper Lower

32 2.3 4.66 5.33
64 1.6 4.76 5.23
128 1.2 4.83 5.16
256 0.8 4.88 5.11

SE(X̂0) =
√√√√MS(E)

β̂2
1

(
1
m

+ (X̂0 − X̄)
2

∑
(Xi − X̄)

2

)
,

where MS(E) denotes the error mean square from the regres-
sion. This error mean square is an estimate of the error vari-
ance in a single measurement of Y. An approximate, symmetric
100(1 − alpha)% confidence interval (Neter and others 1983) for
the average X0 that would give rise to Y0, is given simply by

X̂0 ± t (α/2, m − 2)SE(X̂0).

An alternative procedure is to find the values of X which satisfy
the inequality

(
y0 − (β̂0 + β̂1x0)

SE(β̂0 + β̂0 + β̂1x0)

)2

≤ t (α/2, m − 2)2.

These values may be obtained using the quadratic formula and
constitute an asymmetric confidence interval. This is the method
used by the JMP statistical software package (SAS; Cary, NC,
U.S.A.). For the pilot data, with m = 21, the computations were
carried out using SAS (and checked for agreement with JMP), and
then different numbers of subsamples N at a given value of y0 =
26.2 were considered (corresponding to a cumulative F-value of
5 min). For N (subsample), the MS(E) term in the formulas above
was replaced by MS(E)/N, and 99% confidence intervals are given
in Table 3.

DNA extraction
Total DNA from treated sweet potato puree was extracted by

either a MoBioPowerSoil
R©

DNA isolation kit (Carlsbad, Calif.,
U.S.A.) or MasterPure DNA extraction kit (Epicentre, Madison,
Wis., U.S.A.), both used according to manufacturer’s recommen-
dations. DNA samples were analyzed by spectrophotometer (Nan-
odrop, Wilmington, Del., U.S.A.) for quantity and quality (260
& 280 nm). For qPCR, DNA was normalized by concentration:
between 5 and 10 ng/μL per reaction.

qPCR
qPCR was run in 25 μL total volume with 2X IQ SYBR Green

supermix (SYBR Green I dye, 50 U/mL iTaq DNA polymerase,
0.4 mM each of dATP, dCTP, dGTP, and dTTP, 6 mM MgCl2,
40 mMTris-HCl, pH 8.4, 100 mM KCl, 20 nM fluorescein; Bio-
Rad, Hercules, Calif., U.S.A.), 300 nM final concentration each
for forward and reverse primers (F1 atp1), vegetable puree DNA
(5 to 10 ng/reaction) and RT-PCR water (Ambion, Austin, Tex.,
U.S.A.) to final volume. Amplifications were performed in a MyiQ
(BioRad) thermal cycler with the following conditions: 95.0 °C
for 3 min; 40 cycles of 95.0 °C for 30 s, 60.0 °C for 30 s,

72.0 °C for 30 s; with FAM channel optics on during exten-
sion stage. MIQE standards were employed for the optimization
and validation of the qPCR assay (Bustin and others 2009). No
template (NTC) and positive controls were used for all assays. For
a sample to be considered positive, its Ct value must be less than
all negative control reactions and its corresponding amplification
curve had to exhibit the 3 distinct phases of real-time PCR: lag,
linear, and plateau. Internal amplification controls were not em-
ployed as no PCR inhibition was apparent. The positive control
was used to normalize data between assays. Ct values were used to
create D- and z-values across target temperatures indicated. These
values were compared to similar values for spore death.

Results and Discussion

Universal primers
More than 3 million mtDNA sequences are available at the Na-

tional Center for Biotechnology Information genome web page
(3,181,082 sequences as of June 2014) (www.ncbi.nlm.nih.gov)
including partial mtDNA genomes for sweet potato, carrot, potato,
green beans, strawberry, apple, and other common fruits and veg-
etables. The results of the comparative analysis between the rape-
seed and Arabidopsis mitochondrial genomes suggest that sequences
among higher plants are highly conserved (Handa 2003), thus hav-
ing many similar sequences to target for consensus qPCR. The
goal was to create a set of primers based on consensus sequences
which would allow universal amplification of plant mtDNA. The
ATP synthase F1 alpha sequence (GenBank AY596672.1) was tar-
geted. This gene’s enzyme catalyzes the final step during oxidative
phosphorylation and is highly conserved in eukaryotes (Millar and
others 2011).

Primer sets were tested empirically using qPCR with melt curve
analysis. Each primer set produced amplicons of expected lengths
when run in 1% agarose gels (data not shown). All amplicons were
sequenced and exhibited 100% identity to the atp1 mitochondrial
gene under NCBI BLAST analysis. A test comparing autoclaved
(121 °C for 20 min) versus nonautoclaved sweet potato puree
DNA was run with each primer set. Primer set 174 (Table 1)
was chosen as the preferable pair because it exhibited the greatest
difference in Ct values between the 2 samples (9 Ct difference ver-
sus 8, 5, & 5 for amplicon lengths of 141, 108, and 81 base pairs,
respectively). This was expected as longer amplicons would be sta-
tistically more likely to experience degradation and fragmentation
than shorter ones.

Universal primers for plant products were created using con-
sensus sequences in the atp1 mitochondrial gene creating a 174
bp amplicon. Therefore, this qPCR protocol could be used for
all fruits and vegetable without the necessity of creating a new
set of primers for each product. The universality of these primers
was confirmed by surveying a variety of vegetables, fruits, nuts,
and biofuel precursor (Table 2). The Ct values were determined
for fresh and autoclaved product to assure a significant increase
and a measurable outcome for each. The qPCR assay utilizes a
scale of 0 to 40 for Ct values. The lower the Ct value, the greater
numbers of the sequence of interest and the more robust the as-
say. A Ct value in the teens and low twenties is deemed robust.
For uncooked plant products, Ct values were in this range. The
exceptions were switch grass, which has a high cellulose content
and was milled to 3 mm, and grapes (both Ct = 28). The drying
procedure, followed by milling probably fragmented the mtDNA
in the switch grass. Many of the fruits, including grapes have high
sugar and pectin contents. Lower, more robust, Ct values were
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obtained with pectin-containing fruits at a later date, using a dif-
ferent DNA extraction kit which eliminated pectin (MasterPure
Plant leaf DNA purification kit; Epicentre) (data not shown). Au-
toclaved Ct values were obtained for all plant products tested and
were well below the maximum of 40; the cut off target cited in the
literature and the lower sensitivity of the generated standard curve
was ca. 35 cycles. Differences between uncooked and autoclaved
Cts ranged from 4 to 17 for grape and carrot, respectively. The Ct
value represents copy number of gene fragments as illustrated by
the standard curve (Figure 1). In an optimized qPCR assay near
100% efficiency, an increase in Ct of 2.5 represents a 1-log reduc-
tion in copy number. Therefore, the mtDNA gene copies were
fragmented and copy number available for amplification reduced
by autoclave treatment (121 °C for 20 min). This 4 to 17 increase
in Ct values represents a 1.6- to 6.8-log copy number reduction
of the atp1 gene due to fragmentation.

In commercial applications, DNA extraction methods and time-
temperature correlations would have to be determined for each
plant product and its thermal process. However, this is relatively
simple to determine empirically.

MIQE standards
A standard curve for the universal primers was developed as

required by MIQE standards (Bustin and others 2009) (Figure 1).
The PCR efficiency was 106%, goodness-of-fit linear regression
correlation coefficient (R2 = 0.9884), linear range of detection
from log10 8.0 to log10 1.0 copy numbers with 10 copies

(corresponding to Ct ca. 35 cycles) the limit of detection. These
parameters were all within acceptable ranges in MIQE standards.

Correlation between Ct values and thermal death time
To compare the Ct values directly to time-temperature and

spore destruction, a hot oil bath was used to reach temperatures
above the boiling point of water and to give the operator complete
control of hold and cooling times, having determined the CUT
for the system. The Ct value of sweet potato puree had a high
correlation to time (min) at 121 °C in simple linear regression
(R2 = 0.87) (Figure 3). Variability at each time point was due to
DNA extraction efficiency, operator error in pipetting and small
sample size. The largest factor in variation would be pipetting
error due to dilutions needed to normalize each sample to 5 to
10 ng/μL. While DNA can be solubilized in water, it is a long,
sticky molecule and tends to form microscopy clumps resulting in
a nonhomogeneous solution. Buffers such as Tris-EDTA (pH 7.5
to 8.0) are used to create a more homogeneous DNA solution.
However, these diluents interfere with downstream applications
of DNA such as qPCR. In these assays, RT-PCR grade water
(Ambion) was used for all dilutions. Final DNA concentrations
from extractions ranged from 5 to 500 ng/L. This necessitated the
use of different dilutions to normalize DNA sample concentrations
prior to qPCR. Less operator handling after DNA extraction
would reduce variability. Using a 96-well format with automated
DNA and qPCR systems, operator error would be reduced and
mean N values could be increased to reduce standard errors.

Figure 3–Sweet potato puree mtDNA fragmentation as measured by
Ct value of 174 bp amplicon in hot oil bath (121 °C).

Figure 4–Mitochondrial DNA fragmentation in hot oil bath
(121 °C) versus spore counts.
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G. stearothermophilus was used as a spore surrogate for C. bo-
tulinumin a reduction curve. The mean Ct values and log CFU/mL
were analyzed by simple linear regression (R2= 0.87). This study
shows that a linear response exists when spores were in the range
log 8.0 to 2.0, with log 2.0 being the lowest level of detection
(Figure 4). Because it correlates with spore death, Ct could be
used as a rapid, presumptive test to assay a product before it is
shipped from the factory.

Retort data
Pilot-scale retort data show a high correlation between Ct and

cumulative F-values of low acid sweet potato puree (R2 = 0.88)
(Figure 5). Data points below the cumulative F-value of 3 min
tested positive by Prospore GS ampoules (Mesa Laboratories)
and above this value tested negative (>6D reduction of GS
process). Retort processes are notorious for long CUT and cool
down times. Since this was a non-continuous process, cumulative

Figure 5–Comparison of mitochondrial DNA fragmentation
with cumulative F values with two retort processes using
canned sweet potato puree.

Figure 6–Calculation of D-values for timed oil bath
treatments.
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F-values are permitted. This is a total system approach that uses
not just the hold time at target temperature, but the total heating
profile. Using inverse prediction statistics, it was determined that
for retort process validation, 32 samples would be required for
a 2.3% standard error with a cumulative F value between 4.66
and 5.33 min for a 99% confidence interval (Table 3). This range
of cumulative F-values corresponds to the FDA recommended
time (5 min) to eliminate biological indicator spores at 121 °C
(http://www.fda.gov/RegulatoryInformation/Guidances/ucm
071261.htm).

Comparison of D- and z-values
D121 and z-values determined in hot oil bath for G. stearother-

mophilus ATCC 7953 (GS) spores were 2.71 min and 11.0 °C

(Figure 6 and 7), respectively. These values were slightly higher
than a commercial product using the same ATCC strain for au-
toclave validation (Prospore, Mesa Laboratories) which cited a
D121 of 1.8 min and a z-value of 7.4 °C under saturated steam.
Other D- and z-values for G. stearothermophilus spores cited in
the literature and on corporate spore supplier web pages are D120

from 1.5 to 3 min with z-value of greater than or equal to 6 °C
(Namsa, Northwood, Ohio, U.S.A.) and D121 of ca. 2 min in wa-
ter (Lundahl 2003). Both of these cited values were based on an
initial population of 106 spores. Head and others (2007) found that
D- and z-values varied widely based on the initial concentration
of spores (103 versus 106) when treated with superheated steam.
While the TDT employed in our assay is a pressurized container,
one would not expect the same time-temperature treatment in a

Figure 7–Calculation of z-value for Geobacillus
stearothermophilus using D-values from.

Figure 8–Sweet potato puree D-values in hot oil bath based on
mtDNA fragmentation using log10 copy number.
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Figure 9–Calculation of z-value for sweet potato puree
mtDNA fragmentation using D-values from Figure 8.

hot oil bath as pressurized, saturated stream in an autoclave. Based
on precautionary notes in commercial spore technical data sheets
(Prospore, Namsa) and values in the literature, spore D- and z-
values can vary widely due to type of heat treatment (wet versus
dry), initial concentration of spores, and spore carrier or media
(Head and others 2007). As an added precaution, a safety factor
is added to empirically derived data, that is, total death time is
rounded up, to ensure complete destruction of spores (Tucker and
others 2008).

D121 and z-values for Ct values from a 174-bp universal plant
amplicon were 11.3 min and 17.8 °C (Figure 8 and 9), respec-
tively, for mtDNA from sweet potato puree heated in a hot oil
bath. Variability at each time point was due to DNA extraction
efficiency, operator error in pipetting during dilutions and small
sample size. Variability was analyzed in depth in the hot oil bath
discussion. Due to the conversion of Ct to log10 copy number of
amplicon the Ct-D121 value (11.3 min) was much higher than the
G. stearothermophilus D121 (2.71 min). G. stearothermophilus spores
have a D121 value approximately 10× greater than C. botulinum
(D121 = 0.21 min; Esty and Meyer 1922; Townsend and others
1938; Stumbo 1965), the spore of concern in low acid, canned
or aseptically packaged foods. The Ct-D121 value of sweet potato
puree mtDNA is approximately 4× greater than the G. stearother-
mophilus indicator spore. Because of its higher D121 value, it might
be difficult to predict the FDA recommended F-value for steril-
ization (F0 = 5 min) using a log function of Ct value. However,
sterilization in the pharmaceutical industry requires higher val-
ues (F0 > 12 min) where G. stearothermophilus spores leave no
measurable outcome (Lundahl 2003).

When compared directly, the increase in Ct value had nearly a
1:1 ratio with G. stearothermophilus destruction at 121 °C in hot oil
bath treatments (ratio = 0.97) (Figure 4). A one-unit increase in Ct
was calculated as 3.5 min at 121 °C (data not shown) compared
to a 1-log reduction of G. stearothermophilus at 2.71 min. The
destruction of mtDNA as measured by log10 copy number was
not a first-order relationship but a simple inverse relationship with
time-temperature. Therefore, the use of Ct values directly will
have greater utility than conversion to log values.

Conclusions
Fragmentation of mtDNA, as measured by Ct, of low-acid foods

at high temperature has a high correlation to time-temperature
(Figure 3); cumulative F-values (Figure 5) and reduction curves of
spore surrogates (Figure 4). This assay represents a rapid, inexpen-
sive, quantitative method that can be used to test low-acid foods
in continuous-flow and batch thermal systems for heating efficacy
and microbial safety. It is especially useful for thermal processes

over 100 °C, since temperatures above boiling can rapidly damage
DNA. Its advantages over enzymatic assays are that mtDNA is
highly stable and can be stored at freezing temperatures for long
periods. Because of the stability of DNA in a food matrix, the
product can be stored for many months at −20 °C and assayed
later if questions arise. This is an advantage over enzymes and
can be used as a process library if a past production needs to be
re-analyzed. Unlike endogenous enzymes, mtDNA is universally
found in all foodstuffs. mtDNA can be used for all plant products
tested. Processors will be able to track process deviations using
rapid molecular methods. Processors can use this presumptive test
prior to shipping out a product. This method uses no probes, de-
vices or other additives to the continuous-flow or batch systems
for monitoring purposes. It utilizes equipment already available in
an industrial microbiological testing lab. This method will meet
MIQE standards and will be operator-friendly, requires minimal
training, and has a 4 h turn-around time. This method can be
standardized for consistency between labs and results are operator-
independent. Quantitative PCR is a protocol approved by USDA
and FDA for detection of bacteria; therefore process authorities
are familiar with the technique and are more apt to approve a new
use. Both DNA extraction and qPCR have been combined and
automated commercially, lending this analysis to high through-
put.

This approach to monitoring food safety represents a paradigm
shift in the use of qPCR. The fastest moving food particles or a
cold spot in a thermal process can be assayed directly, by intrinsic
mtDNA, providing a rapid test for thermal efficacy. We propose
monitoring and validating the efficacy of thermal processes of
low-acid plant foods by using mitochondrial DNA fragmentation
detection by qPCR.
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